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Investigate Neurological Disorders/Diseases with

Functional MRI + Machine Learning

fMRI ROI Machine Learning
Mean Time Series Algorithm
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Investigate Neurological Disorders/Diseases with

Functional MRI + Machine Learning

fMRI ROI Machine Learning
Mean Time Series Algorithm

A e e e o

Recu rrent' I\'Ie'ulrél | NétWork with
Long Short-Term Memory (LSTM)

Example applications: Classify disease state
Identify biomarkers for disease

Yale sSCHOOL OF MEDICINE ICraddock et al., Nature Methods 2013 SLIDE 4



Challenge: How to Handle Limited Sample Size +

Deep Learning from fMRI1?

fMRI ROI Machine Learning
Mean Time Series Algorithm

Recurrent Neural Network with
Long Short-Term Memory (LSTM)

Difficulties in gathering large fMRI datasets
* Time and cost for acquisition, annotation
» Special cohorts: disease/disorder, treatment, children...
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Our Solution: Make Full Use of All the Data with

Multitask Learning

e Jointly learn shared information across related tasks

fMRI Primary Task: Discriminative

fMRI ROI
Mean Time Series ASD

L.stm /0 |
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Our Solution: Make Full Use of All the Data with

Multitask Learning

e Jointly learn shared information across related tasks

fMRI Primary Task: Discriminative

fMRI ROI
Mean Time Series ASD

L.stm /0 |

+ No annotation required

DL S PNy .. + Sy S S

+ Assist in interpreting discriminative model
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Jointly Discriminative and Generative RNN
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First LSTM Layer Models Interactions between

Individual ROIs and Functional Communities

e Input ROI data x, € R? into LSTM with K nodes

e Each LSTM node represents a functional community (group of
ROIs that activate together)

e Community activity represented by hidden state h, € RX and cell
state ¢, € RK

LSTM LSTM ht,_gt_ K nodes
Cell Cell e

X X, xT
R ROI 2 AT m /‘ﬁ A Y
Time-series "3 M
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Discriminative Path Learns ASD/HC Classification

Cell

— Yy Classification
Mean Pooling | ' Sigmoid | Probability 7
LSTM LSTM - LSTM .
‘ T ‘ Hidden state h; of

Cell Cell

hy h, | hy
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Time-series
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for discriminative task
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Generative Path Models fMRI ROl Time-Series

e Cell state c; of LSTM functional community layer used to
generate ROl dataattime T + 1

Xr+1 = Wacr + by

e Constrain W; = 0 to model only positive community influences

LSTM LSTM Generated
X, X,
M R nodes
R ROI R Ay T LW A GKM
Time-series
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Training the Discriminative and Generative RNN

Classification

1 = iy
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Training the Discriminative and Generative RNN

Classification
Probability ¥

Mean Pooling H I Sigmoid I

20 nodes

LSTM | | LsT™M |
Cell H

Generated
Data X7,

'A‘K\ A ’ﬁ Yo V
w02 SOASYAIAAS L~ o, 5750+ o0,
- MSE. 0.1 BCE

Yale SCHOOL OF MEDICINE SLIDE 14



Extract Functional Communities Using Weights in

Dense Layer of Generative Path

 What makes a community?
— Community member strongly influenced by its community
— Community strongly influenced by its members

LSTM LSTM Generated
Cell Cell Data X7,
X, X,

fMRI ROl 2/ \sfvx 7 LW /\ﬂ A ’GKM

Time-series
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Extract Functional Communities Using Weights in

Dense Layer of Generative Path

 What makes a community?
— Community member strongly influenced by its community
— Community strongly influenced by its members

e Assign ROl memberships to community k by K-means clustering of
weights in column k of W/

LSTM LSTM Generated
Cell Cell Data X7,
X1 Xy
W
fMRI ROI .Q‘{,%‘,(;Alw A /.‘j VUKMA ¢ E}RROIS
Time-series . ,

K Communities
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Datasets and Preprocessing

e 4 Sites from Autism Brain Imaging Data Exchange (ABIDE) |
— NYU, UM, USM, UCLA (~100-200 subijects)
e Resting-state fMRI from Preprocessed Connectomes Project

— Connectome Computation System pipeline
— Automated Anatomical Labeling (AAL) atlas (R = 116 ROIs)

e Standardized ROI mean time-series
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e 4 Sites from Autism Brain Imaging Data Exchange (ABIDE) |
— NYU, UM, USM, UCLA (~100-200 subijects)
e Resting-state fMRI from Preprocessed Connectomes Project

— Connectome Computation System pipeline
— Automated Anatomical Labeling (AAL) atlas (R = 116 ROIs)

e Standardized ROI mean time-series

- Data augmented to AAw AW A
~14,000-38,000 samples/site 7\ %w
m\\/)&\ﬂ/\\f
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Experimental Methods: Compared Models Trained on

Each Individual ABIDE Site

Classification
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Experimental Methods: Compared Models Trained on

Each Individual ABIDE Site
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Experimental Methods: Compared Models Trained on

Each Individual ABIDE Site

Classification

Model Mean Pooling Sigmoid ~ Probability §
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Experimental Methods: Compared Models Trained on

Each Individual ABIDE Site

Model
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Experimental Methods: Compared Models Trained on

Each Individual ABIDE Site

Model

LSTM-S [7]

FC-SVM |1
anetal, [TV [1{}] Hidden Markov Model
ietal, Frot. | TT, T3] Stacked Autoencoders with Deep Transfer Learning
N « Used same ABIDE site and AAL atlas

STV * Reported published values
LSTM-DG
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Experimental Methods: Compared Models Trained on

Each Individual ABIDE Site

Model

LSTM-S [7]

FC-SVM [1] tion of i) -
HMM [11} Evaluation o Implemented models

DTL [13]  10-fold cross validation
— » Paired t-tests to compare all folds
from all datasets

LSTM-D
LSTM-H
LSTM-DG
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Good Results Across 4 Datasets

Our Joint Learning Method Produced Consistently

UM (143 subjects, 46.2% ASD)

Model Mean (Std) | Mean (Std) | Mean (Std) AUC
ACC (%) TPR (%) TNR (%)
LSTM-S [7] || 69.8 (11.4) | 56.7 (24.2) | 74.0 (25.3) | 0.740
FC-SVM [1]|[ 60.2 (12.0) | 46.7 (18.9) | 89.8 (12.8) | 0.713
TIMM [11] || 73.4 (10.5) | 68.5 76.9 0.738
DTL [13] 67.2 68.9 67.6 0.67
LSTM-D || 67.0 (12.0) | 52.9 (22.2) | 78.6 (25.6) | 0.738
LSTM-H || 69.2 (11.4) | 57.0 (14.5) | 78.7 (18.1) | 0.777
LSTM-DG]|[74.8 (10.0) | 60.8 (12.8) |85.6 (14.5)0.774
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Our Joint Learning Method Produced Consistently

Good Results Across 4 Datasets

UM (143 subjects, 46.2% ASD)
Model Mean (Std) | Mean (Std) | Mean (Std) AUC
ACC!%! TPR!%! TNR!%!
LSTM-S [7]|| 69.8 (11.4) | 56.7 (24.2) | 74.0 (25.3) | 0.740
FC-SVM [1]|[ 60.2 (12.0) | 46.7 (18.9) | 89.8 (12.8) | 0.713
TIMM [11] || 73.4 (10.5) | 685 76.9 0.738
DTL [13] 67.2 68.9 67.6 0.67

LSTM-D || 67.0 (12.0) | 52.9 (22.2) | 78.6 (25.6) | 0.738
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e OQutperformed all non-generative models (ACC p < 0.05)
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Our Joint Learning Method Produced Consistently

Good Results Across 4 Datasets

UM (143 subjects, 46.2% ASD)
Model Mean (Std) | Mean (Std) | Mean (Std) AUC

ACC!%! TPR!%! TNR!%!

LSTM-S [7]]] 69.8 (11.4) | 56.7 (24.2) | 74.0 (25.3) | 0.740

FC-SVM [1]]| 69.2 (12.0) | 46.7 (18.9) | 89.8 (12.8) | 0.713
HMM [11] || 73.4 (10.5) | 685 76.9 0.738
DTL [13] || 67.2 68.9 67.6 0.67

LSTM-D || 67.0 (12.0) | 52.9 (22.2) | 78.6 (25.6) | 0.738
LSTM-H || 69.2 (11.4) | 57.9 (14.5) | 78.7 (18.1) | 0.777
LSTM-DG/[74.8 (10.0) [ 60.8 (12.8) | 85.6 (14.5) [0.774

e OQutperformed all non-generative models (ACC p < 0.05)

e Only method to outperform original LSTM fMRI classification
model (ACC p = 0.04, TNR p = 0.04)
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Our Communities are More Robust than Those Found

by Tensor-Based Community Detection

e Compared the 50 communities found across CV folds

0s Dice B Tensor W LSTM

0.75
0.7
0.65 ' . ' '
0.6
NY UM us uc

11% Increase in Dice
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Our Communities are More Robust than Those Found

by Tensor-Based Community Detection

e Compared the 50 communities found across CV folds

0s Dice B Tensor W LSTM

0.75
0.7
0.65 ' . ' '
0.6
NY UM us uc

11% Increase in Dice

e More reliable functional communities - better for interpretation
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Top Influential Communities for ASD Classification

for NYU Dataset

Social

- Episodic

0.22 i A Encoding

0.22 B Value

0.2 = 9 Navigation

0.19 Autobiographical |0.13

Semantic
Social Reward

Reinforcement

Comprehension

Word form Choices

Sentence Decision making |0.17

« Communities are associated with neurocognitive processes affected
iIn ASD
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Conclusions

e What we did:

— Novel RNN-based network for jointly learning discriminative task and
generative model for fMRI ROI time-series data

— Demonstrated higher ASD classification performance and more robust
functional community estimation
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— Modeling reliable functional communities facilitates interpretation of
discriminative model
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Conclusions

e What we did:

— Novel RNN-based network for jointly learning discriminative task and
generative model for fMRI ROI time-series data

— Demonstrated higher ASD classification performance and more robust
functional community estimation

e What this means:
— Can train more generalizable models on smaller fMRI datasets

— Modeling reliable functional communities facilitates interpretation of
discriminative model

e What's next:
— Handle data from across imaging sites
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Thank you!

e NIH Grants T32 MH18268 and RO1 NS035193
e Contact: nicha.dvornek@yale.edu
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