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ABSTRACT

Traditional regression models do not generalize well
when learning from small and noisy datasets. Here we pro-
pose a novel metamodel structure to improve the regression
result. The metamodel is composed of multiple classifica-
tion base models and a regression model built upon the base
models. We test this structure on the prediction of autism
spectrum disorder (ASD) severity as measured by the ADOS
communication (ADOS COMM) score from resting-state
fMRI data, using a variety of base models. The metamodel
outperforms traditional regression models as measured by the
Pearson correlation coefficient between true and predicted
scores and stability. In addition, we found that the metamodel
is more flexible and more generalizable.

Index Terms— Metamodel, Regression, Autism Spec-
trum Disorders, Resting-state fMRI, ADOS Communication
Score

1. INTRODUCTION

Metamodeling or meta-learning [1] often describes the pro-
cess of learning from previously learned information [2].
Mitchell used the term ‘bias’ to describe a learning system’s
intrinsic preference for one generalization over another [3].
One perspective of meta-learning is that it learns to find the
optimal bias for the specific task by combining multiple base
learners [4]. However, the term meta-learning has no rigorous
definition and its meaning differs from group to group [4].
Among all the interpretations, stacked generalization is one
widely used approach in metamodeling [4, 5]. It puts all the
predictions from the base models in a second space and gen-
eralizes in this second space to make the final guess for the
test set [5]. Parallel learning, one of the many variations in
stacked generalization, partitions a large dataset into several
subsets first, and the same learner is applied to these subsets
[6]. This method has been adopted in problems with large
datasets such as financial time series forecasting [7].

Since neuroimaging datasets are generally small, divid-
ing them into even smaller sub-datasets for parallel learning
might not be wise. Therefore, we focused on extracting differ-
ent knowledge from the same set of data and integrating these

results to form the final regression prediction. Our metamodel
is composed of several base models followed by a meta-level
multilayer perceptron model. The base models are binary
classification models and the predicted classification scores
would then be fed as input into the meta-level multilayer per-
ceptron model to generate the regression prediction.

Here, we tested 5 common classification networks as our
base models: long short-term memory network (LSTM) [8],
support vector machine (SVM) [9, 10], random forest (RF)
[9, 11], multilayer perceptron (MLP) [9] and logistic reges-
sion (LR) [10]. The metamodel structure is tested on the pub-
lic ABIDE dataset [12] with 8-fold cross-validation and new
data generalization experiments. Our results show that the
metamodel outperforms the traditional regression models for
every base algorithm in various aspects.

2. METHOD

2.1. Metamodel structure

The metamodel structure (Fig. 1, left) can be explained as
follows:

Step 1: Split the data for learning into a training set (TR)
and validation set (VS). Data augmentation could be applied
after the split if necessary.

Step 2: Train n base classification models {B1, B2, . . . ,
Bn} using TR, and optimize hyperparameters using VS.

Step 3: Feed the same TR to the trained base models to
generate n classification scores for each sample. Use these
scores as input for the regression meta-level model, a fully
connected neural network. Train the meta-level model using
the TR, and optimize hyperparameters according to VS re-
sults.

Step 4: Predict the score on new, unseen data, e.g., a test
set (TS), using the trained base models and meta-level model.

2.2. Generalizing to new data

This metamodel structure could be generalized to a new
dataset (Fig. 1, right) in two methods:

Method 1: Apply the previously trained base models
to the new dataset, then feed these scores to the previously



trained meta-level model to generate the prediction.

Method 2: Split the new dataset into TR-new, VS-new
and TS-new, with data augmentation applied after the split
if desired. Use the previously trained {Bi} to generate clas-
sification scores for TR-new. Train a new meta-level model
with the TR-new classification scores, and optimize hyperpa-
rameters using VS-new. Apply the previously trained {Bi}
on TS-new and analyze TS-new classification scores with the
newly trained meta-level model to get the prediction.

Fig. 1. Metamodel flowchart.

2.3. Advantages of the metamodel

A metamodel structure can be beneficial to the regression task
for several reasons. First, each base learner is assigned with
a much simpler and more targeted task by breaking down the
regression problem. Instead of capturing the features needed
to be able to predict the whole range of ASD severity scores
all at once for traditional regression models, the base model,
for example at a threshold of 0.5, would only need to learn
the characteristics of samples with the score of 0 and make
the binary decision. It is more flexible in the sense that each
base model could get its own set of hyperparameters to better
grasp the underlying features. Second, the meta-level model
could serve to evaluate the performance of each base model
and adjust the weights and biases on the classification scores
accordingly. Third, the base model does not need to be con-
strained to only one type of model; different learners can be
applied here as base models.

Table 1. Dataset A characteristics
Institution Number of Total number of Age FIQ

subjects time points mean(SD) mean(SD)
USM 89 235 21(6.57) 105(16.99)
NYU 79 175 15(6.97) 108(16.62)
Pitt 26 195 19(6.80) 111(13.53)
Olin 18 205 16(3.13) 113(17.87)

CMU b 8 315 27(6.88) 117(8.67)
SBL 8 195 33(8.53)

Table 2. Dataset B characteristics
Institution Number of Total number of Age FIQ

subjects time points mean(SD) mean(SD)
CMU a 5 225 26(6.57) 133(16.47)

KKI 17 151 10(1.46) 97(15.12)
MaxMun d 5 195 10(2.00) 109(8.57)

SDSU 13 175 15(1.79) 114(16.42)
Stanford 17 175 10(1.62) 114(18.72)
UCLA 1 41 115 13(2.62) 103(13.13)
UCLA 2 12 115 13(1.95) 92(12.40)

3. EXPERIMENTS

3.1. Participants

We use data from the ABIDE dataset [12]. It is an open ASD
neuroimaging dataset, including resting-state fMRI (rsfMRI)
and phenotypic data. We utilize the public preprocessed
ABIDE data [13], choosing the Connectome Computation
System (CCS) pipeline with band-pass filtering and with-
out global signal regression and the AAL brain parcellation,
which creates 116 regions of interest [13]. We specifically
chose the data from two sets of institutions; the characteristics
of these two datasets A and B are shown in Table 1 and Table
2.

3.2. Preprocessing methods

We performed an 8-fold cross validation on dataset A and
split the data into 78.7% training set (TRa), 8.8% validation
set (VSa) and 12.5% test set (TSa) with a fixed random state
such that the same splits are used for all models. Next, we
augmented our data by extracting sequences of 90 time points
with a stride of 10 time points between samples. We use the
average of all sample predictions from a given subject as the
predicted score for that subject.

For LSTM models, we used the rsfMRI ROI time-series
combined with phenotypic data (age and FIQ) as the input
features. Each phenotypic variable is z-normalized and repli-
cated to match the dimension along the time-domain of the
116 rsfMRI features [14]. The FIQ for SBL site subjects is
set to zero since their FIQ information is not available. For
SVM, RF, LR and MLP, we used functional connectivity be-
tween each pair of ROIs as the input features. We computed
functional connectivity as the matrix of Pearson correlation
coefficients, took the upper triangle values and reshaped them
into a one-dimensional vector of length 6670 as the input.



3.3. Methods implementation and evaluation

Our objective is to predict ASD severity from rsfMRI. ASD
severity is often assessed using the Autism Diagnostic Ob-
servation (ADOS) [15], and we choose the ADOS communi-
cation score (ADOS COMM) as our prediction target, which
ranges from 0 to 8. Each base model classifies whether a sam-
ple has a score lower or higher than a given threshold. Seven
thresholds 0.5, 1.5, ..., 6.5 are chosen for the base models (B1,
B2, ..., B7). Only seven cutoffs are adopted because very few
patients have a score of 8, thus a base model with a cutoff of
7.5 would learn little to no information. All based models are
trained on TRa with hyperparameters tuned using VSa.

The LSTM base models are single layer models with 16
or 32 hidden nodes. MLP base models have two hidden layers
with 1000 and 100 nodes. The loss function for both models
is binary cross-entropy. The dataset could be highly imbal-
anced, therefore class weight is used based on the ratio of the
number of majority to minority class samples in the training
set. To prevent overfitting, dropout regularization, l2 regular-
ization and Gaussian noise added to the training targets are
applied to both models. SVM, RF, and LR base models are
trained in MATLAB using default parameters except as noted.
SVM base models use a linear kernel, tuning the hyperparam-
eters controlling the box constraint and kernel scale. RF base
models are optimized for the number of trees, and LR base
models are optimized for the strength of l2 regularization.

The meta-level model here is a fully connected neural net-
work with a 4-node hidden layer. It is trained on TRa classi-
fication scores and optimized on VSa results. We choose sig-
moid as the activation function for the hidden layer and linear
activation for the output.

LSTM, MLP, SVM, RF and linear regression models (Ra)
are trained on the exact same cross-validation splits as the
metamodel structure for comparison. A 16-node LSTM re-
gression model is used (phenotypic data included), and l2
regularization, sample weight and dropout are applied. The
MLP regression model has two hidden layers with 1000 and
100 nodes. For SVM, RF and linear regression models, the
hyperparameters which have been optimized are the same as
the ones in the base models as described above.

To evaluate the generalization of the proposed metamodel
structure, here we use a new dataset B. Two generalization
methods as stated above are tested using the LSTM and MLP
base algorithms. After a 5-fold cross-validation split and data
augmentation on dataset B, we get training set B (TRb), vali-
dation set B (VSb) and test set B (TSb). For the first method,
we apply all 8 trained metamodel structures (the trained base
models {Bi(TSa)} followed by the trained meta-level model
Ma) to the entire dataset B. Second, a new meta-level model
(Mb) is trained on TRb classification scores, optimized on VSb
classification scores and assessed on TSb classification scores,
which are all generated by the previously trained base mod-
els {Bi(TSa)}. For comparison, previously trained regression

Table 3. Pearson correlation coefficient between true and pre-
dicted scores from 8-fold cross-validation with Dataset A

Base Ra Ma
algorithm mean(SD) mean(SD)

LSTM 0.2455(0.24) 0.2693(0.20)
MLP 0.2723(0.22) 0.3981(0.19)
SVM 0.3037(0.20) 0.3582(0.19)
RF 0.2192(0.23) 0.3077(0.21)
LR 0.2528(0.23) 0.2915(0.21)

Table 4. Pearson correlation coefficient between true and pre-
dicted scores for Dataset B

Base Ra on dataset B Ma on dataset B Rb on TSb Mb on TSb
algorithm mean(SD) mean(SD) mean(SD) mean(SD)

LSTM 0.1693(0.05) 0.2322(0.06)* 0.1418(0.25) 0.2599(0.12)
MLP 0.0326(0.04) 0.1105(0.05)* 0.0685(0.23) 0.0459(0.16)

* Significantly different compared to Ra, paired two-tailed t-test with p < 0.05

models (Ra) are applied to the entire dataset B. In addition,
new traditional regression models (Rb) are trained and opti-
mized on the same training and validation set as Mb.

3.4. Results and discussion

We use Pearson correlation coefficient between the true and
predicted ADOS COMM scores on the subject level to assess
the model performance. The results on dataset A show that
the metamodels (Ma) outperform the traditional regression
models for all 5 methods (Table 3). Furthermore, we per-
formed a 2-way repeated measures ANOVA to test whether
there was a difference between traditional vs. metamodel
pipeline results, accounting for the repeated use of the same
folds for testing the different base algorithms. We found
a statistically significant effect for the regression model
method (traditional vs. metamodel pipeline, F (1, 7) = 10.49,
p = 0.01), indicating the mean correlation for the metamod-
els (M = 0.32, SD = 0.20) was significantly higher than for
the traditional regression models (M = 0.26, SD = 0.21).
The metamodels not only achieve higher correlation, but with
smaller variation across folds. Therefore, they are both more
effective and more stable than the traditional models.

Though the direct prediction of ASD behavioral score has
rarely been studied, post-hoc analysis of classification mod-
els may correlate ASD behavioral scores with the classifica-
tion scores to justify the model’s efficacy. For example, a
Pearson correlation coefficient of 0.348 between the classifi-
cation scores and ADOS total score (the summation of ADOS
communication and social scores) was reported in post-hoc
analysis of a classification model [16]. Though not directly
comparable, note that for the ADOS communication score we
achieved up to 0.398 correlation using predictive analysis.

The generalization experiments show that the metamodel
has better or similar generalizability compared to traditional
regression models (Table 4). For the first generalization



method where the previously trained models are directly
applied, the metamodels Ma performed better than the tra-
ditional regression models (Ra) on average for both LSTM
and MLP (paired two-tailed t-test, p = 0.03 and p < 0.001,
respectively). Furthermore, the LSTM Ma result produced a
significant correlation value (r(110) = 0.2322, p = 0.01).
However, the performance of the newly trained meta-level
model Mb varies across different base algorithms: LSTM-
based Mb outperforms Ra while MLP-based Mb performs
similarly to Ra. Thus, the success of the metamodel structure
is dependent on the underlying learning approach.

We also compared traditional regression models Rb
trained on TRb and optimized on VSb. The LSTM-based
Mb also achieved higher correlation than Rb on average. In
addition, a significant correlation between all predictions and
the true scores for dataset B is observed for LSTM-based Mb
(r(110) = 0.2308, p = 0.02), while the correlation for the
whole dataset for Rb is not significant (r(110) = 0.1068,
p = 0.27). Thus, using the pretrained base models and train-
ing just the meta-level model on a new dataset is capable
of learning more predictive models than training traditional
regression models on the new data from scratch.

4. CONCLUSIONS

We proposed a metamodel structure for regression prob-
lems where classification base models are first used to learn
varying information, followed by a meta-level model which
combines the base model information and produces the pre-
diction. The metamodel was tested on the prediction of
ADOS COMM from rsfMRI using 5 base algorithms. The
metamodel showed promise in increasing the correlation
between true and predicted scores compared to traditional
regression methods, on both cross-validation and new data
generalization experiments. To further improve the prediction
result, we could test this metamodel structure on more clas-
sification methods and potentially combine multiple learning
algorithms to better capture different features for generating
the prediction. Different algorithms could also be explored
for the meta-level model.
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[9] A. Sólon et al., “Identification of autism spectrum disorder
using deep learning and the abide dataset,” NeuroImage: Clin-
ical, vol. 17, 08 2017.

[10] M. Parikh et al., “Enhancing diagnosis of autism with op-
timized machine learning models and personal characteristic
data,” Frontiers in Computational Neuroscience, vol. 13, pp.
9, 02 2019.

[11] J. Fredo et al., “Diagnostic classification of autism using
resting-state fmri data and conditional random forest,” 07
2018.

[12] A. Di Martino et al., “The autism brain imaging data exchange:
towards a large-scale evaluation of the intrinsic brain architec-
ture in autism,” Mol Psychiatry, vol. 19, pp. 659–667, 2014.

[13] C. Craddock et al., “The neuro bureau preprocessing initiative:
open sharing of preprocessed neuroimaging data and deriva-
tives,” in Neuroinformatics 2013, Stockholm, Sweden, 2013,
number 41.

[14] N. C. Dvornek et al., “Combining phenotypic and resting-
state fmri data for autism classification with recurrent neural
networks,” in 2018 IEEE 15th International Symposium on
Biomedical Imaging (ISBI 2018), 2018, pp. 725–728.

[15] I. Kamp-Becker et al., “Diagnostic accuracy of the ados and
ados-2 in clinical practice,” European Child and Adolescent
Psychiatry, vol. 27, pp. 1193–1207, March 2018.

[16] C. Heng et al., “Multivariate classification of autism spec-
trum disorder using frequency-specific resting-state functional
connectivity—a multi-center study,” Progress in Neuro-
Psychopharmacology and Biological Psychiatry, vol. 64, pp.
1–9, 2016.

http://fcon_1000.projects.nitrc.org/indi/abide/
http://fcon_1000.projects.nitrc.org/indi/abide/

	 Introduction
	 Method
	 Metamodel structure
	 Generalizing to new data
	 Advantages of the metamodel

	 Experiments
	 Participants
	 Preprocessing methods
	 Methods implementation and evaluation
	 Results and discussion

	 Conclusions
	 Compliance with Ethical Standards
	 Acknowledgments
	 References

