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The Image Registration Problem

e Goal: Find the transformation T to register
postresection and preoperative brain images
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e Motivation: Evaluation of epilepsy patients
e Why not use traditional registration methods?

— Missing correspondences in resection volume

— Possibly highly nonlinear deformations near
resection site
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Approaches to Handle Missing

Correspondences

e Previous Methods

— Hybrid similarity metric [Hartkens et al., MICCAI 2002;
Papademetris et al., MICCAI 2004]

— Directly model vast changes

e Biomechanical models for brain deformation in tumor
growth [Zacharaki et al., Trans BME 2008]

e "De-enhance” contrast image [Zheng et al., MICCAI 2007]
e Model for partial data [Periaswamy and Farid, MedIA 2006]

e Our Key Observations
— Given valid correspondences, could

use standard registration algorithm > Jointly
— Given registered images, could label Estimate

missing correspondence regions



MAP Registration Framework:

Introducing the Indicator Map

e In maximum a posteriori framework, estimate

T =argmax log p(T |U,V)
T

e Consider “hidden” indicator map | on U
— I(X) = 0: no correspondence ;«;,‘v'i?fik'.;
in V (resection voxel) v{‘?
— I(x) = 1: valid tissue W)
correspondence in V
e Marginalized MAP framework:

'f:argmaxlog{z p(T,| |U’V)}
T I




Applying the EM Algorithm:

The M-Step

e Update the estimate for T using transformation
Tk from the previous iteration:

T+ :argg]ax EI|U,V,T" [Iog p(U,V I T, I)
+log p(T | 1)+log p(1)]

e Assume a set M of possible indicator maps I.;:
T =argmax Y p(l,|U.V,T");
T | eM

log p(U,V|T,1,)+log p(T|1,)]



Applying the EM Algorithm:

The E-Step

e Compute the probability of an indicator map
given the images and current transformation
estimate

p(UV T 1) p(T [1,) p(1 )

Zp(UV|Tk L ) P(T* [1,) P

p(1, UV, T¥)=

e Final indicator map estimate:

| =argmax p(lm |U,V,'f)

m




Likelihood Models:

Directly Comparing Intensities

e Assume voxels are independent
> need models for p(U (x).V (T (x))|T.1)
e Probability distribution models
— No correspondence: Uniform distribution
- Valid correspondence: U (x)-V (T (x)) ~Normal (0,c)

% 1(x)=0

p(u(x),V(T(X))IT,|)=< ) exp(_[u(x)v(T(x))Tj 1(x)=1
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where ¢ = number of intensity levels



Likelihood Models:

Correlation Coefficient (CC)

e Probability distribution models
— No correspondence: no correlation, uniform

distribution
— Valid correspondence: higher probability with
higher CC
o0 OV TN ) o)
zexp(p) L 1(x)=1

where k=21exp(0)
Z = normalizing constant

p = CC computed using only voxels
where | (x)=1
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Transformation Prior Given the

Indicator Map

e Free-form deformation transformation -+

model using uniform cubic B-Splines - ,
e Assumptions 2

— Control points t; are independent S

— Control point components t are independent

— Brain tissue may deform more near resection
> Model t|1, 0N (g0%(d;))

where u=starting location of t on uniform grid
Gz(di)oci

di

gl
[T T T T

d, = distance between p, and boundary of
resection in |,
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Indicator Map Spatial Prior

Model

e Training Set Assumptions
— Segmented valid (S,) and missing
(S,,) correspondence areas
— Resections in similar area
e Use PCA to create shape model
— Embed S in level set @ .

— Model possible segmqentations as
=D+ WP

W/
— Represent map | by weights w |,
> Compute p(1) using w~N(0,Z, ) ‘
e Indicator map library: constrain w
to range governed by the eigenvalues
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Results on Synthetic Data:

Experimental Setup

e Synthetic Dataset Creation

- Preoperative image
e Slice from normal brain

— Postoperative image
e “Resected” tissue on left side
e Warped using physical model

e Registration Setup
— Likelihood model: direct intensity comparison
— Leave-one-out cross-validation

e Compared to standard non-rigid registration
(NRR) method [Rueckert et al., TMI 1999]

— Implemented in Biolmage Suite [papademetris et al.,
www.bioimagesuite.org]
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Results on Synthetic Data:

Sample Difference Images

Standard NRR Our Method

e High errors e Flatter overall

especially near e Most improved near
resection resection



YALE UNIVERSITY

Results on Synthetic Data:

Displacement Field Errors

e Calculated error statistics between true
displacements and displacements produced by
registration algorithms

e Performed paired one-tailed t-tests

Standard NRR  0.0022 4.2555 0.5361 0.6578
Our Method 0.0012 3.0010 0.3034 0.3360

p-value < 0.03 <0.0007 < 4E-5 < 2E-6

- Our method reduced all displacement error
statistics compared to standard NRR
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Results on Real Data:

Experimental Setup

e 7/ 3D MR image pairs from epilepsy patients
e Likelihood model: correlated intensities

o Artificially enlarged training set

— Shown to improve shape modeling capabilities
[Koikkalainen et al., TMI 2008]

— Only have small number of available images
— Randomly warped true indicator using FFDs

v R R

True map Artificial maps

— 30 images/training set



Results on Real Data:

Registered Images

Postresection Standard NRR Our Method
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Average CC in valid region: +19% +51%
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Results on Real Data:

Estimated Indicator Map

e Indicator map for valid correspondences

e Average dice coefficients (n = 7)
— Between estimated and true maps: 0.91

— Between best reconstruction using PCA
components and true map: 0.92

- Estimated indicator map limited by library of
possible maps built using PCA on training data
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Conclusions and Future Work

e Presented registration method for preoperative
and postresection images

— Handled missing correspondence problem by
including a “hidden” indicator map

— Simultaneously estimated registration
parameters and correspondence regions

— PCA spatial prior guided indicator map selection

e Future work
— More discrete labels or continuous indicator map
— Incorporate other similarity metrics (eg., MI)

— Difficulty of spatial prior training data »>
consider intensity-based prior
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Thank you!
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