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ABSTRACT
We propose a method for estimating more reproducible func-
tional networks that are more strongly associated with dy-
namic task activity by using recurrent neural networks with
long short term memory (LSTMs). The LSTM model is
trained in an unsupervised manner to learn to generate the
functional magnetic resonance imaging (fMRI) time-series
data in regions of interest. The learned functional networks
can then be used for further analysis, e.g., correlation analysis
to determine functional networks that are strongly associated
with an fMRI task paradigm. We test our approach and com-
pare to other methods for decomposing functional networks
from fMRI activity on 2 related but separate datasets that
employ a biological motion perception task. We demonstrate
that the functional networks learned by the LSTM model are
more strongly associated with the task activity and dynamics
compared to other approaches. Furthermore, the patterns
of network association are more closely replicated across
subjects within the same dataset as well as across datasets.
More reproducible functional networks are essential for better
characterizing the neural correlates of a target task.

Index Terms— Functional Networks, Task fMRI, Recur-
rent Neural Networks, Unsupervised Learning

1. INTRODUCTION

The canonical approach to task-based functional magnetic
resonance image (fMRI) analysis has been mass univariate
analysis at the voxel level [1]. While this allows for poten-
tially high specificity in locating brain regions that activate
with task, the noisy fMRI data lends to many false positives
and the relationship between voxels in different regions is
ignored. Summarizing the voxel data by regions of interest
(ROIs) helps to alleviate the noisy signal problem, although
regressing task against individual ROIs again ignores the
potential relationships between distinct brain regions.

A multivariate approach that analyzes functional brain
networks allows for a higher systems-level view of neurocog-
nitive functions that are associated with a given task. In
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addition, considering several brain regions in a network may
better characterize the task-associated activity and allow for a
more robust representation of task-related brain changes.

The functional brain activity can be decomposed into sep-
arate networks using standard statistical tools such as princi-
pal component analysis (PCA) and independent component
analysis (ICA). However, a challenge in determining func-
tional networks, and more generally in fMRI analysis, is the
question of reproducibility. The number of subjects in a task
fMRI study is often smaller, making reproducibility of results
challenging. While traditional methods for finding functional
networks are based on analytical approaches that fit an entire
dataset, predictive methods that look to generalize well to new
data may improve the reproducibility of functional networks.

In this paper, we propose to use recurrent neural networks
with long short term memory (LSTMs) [2] to estimate more
reproducible functional networks which are strongly associ-
ated with task dynamics. Recently, LSTMs have been applied
to fMRI data, e.g., to model the fMRI activity given a stim-
ulus input [3] and for classification tasks based on fMRI [4].
We focus on using the LSTM’s strength in signal generation,
as demonstrated in applications such as text generation [5].
We describe how the functional networks can be estimated
with unsupervised training of the LSTM model and then used
for followup task-based analysis. We show improved asso-
ciation of functional networks with task dynamics and more
reproducible results within and across 2 task fMRI datasets.

2. METHODS

2.1. LSTM for fMRI Signal Prediction

The use of an LSTM-based network for fMRI data genera-
tion was recently proposed by Dvornek et al. [4] for use as
an auxiliary task to enhance learning of a discriminative task.
We adopt the basic framework but focus solely on the unsu-
pervised learning task of predicting the fMRI time-series data
for N ROIs at time xT+1 ∈ RN given the time-series data
from the previous T time points {x1, . . . xT }. The ROI time-
series data for T time points are directly input into an LSTM
layer with K units. The output of the LSTM layer, i.e., the
hidden state hT ∈ RK , is then fed to a fully connected layer



with N nodes, representing the N ROI signals at time T + 1.
Note that while the network is trained in a supervised manner,
this approach is truly unsupervised, as no labels or additional
information about the data is required.

The functional networks will be represented by the K
units of the LSTM. The network tries to learn the interac-
tion between the N individual ROIs and the K functional
networks by generating the ROI time-series data from the de-
composed functional networks,

x̂T+1 =WfhT + bf ,

where x̂T+1 is the predicted ROI signal at time T + 1, Wf is
a matrix of weights, and bf is a vector of biases. The mem-
bership to a functional network k is defined by the weights
in column k of Wf . Different from [4], we include both L1
regularization (controlled by a hyperparameter l) and a non-
negative constraint on the weightsWf . This encourages func-
tional networks to have sparse ROI membership and to work
in a cooperative manner to produce the ROI signals.

2.2. Functional Networks Associated with Task Dynamics

To determine functional networks that are associated with a
given task performed during the fMRI scan, we perform a
group-wise analysis. While any method can be applied (for
example, a general linear model), here we measure the corre-
lation between the expected fMRI signal based on the task de-
sign and the activity of the functional networks. First, the task
stimulus design is convolved with a canonical hemodynamic
response function. We also compute the temporal derivative
of the expected fMRI response. While all subjects in a dataset
perform the same task, the timing of each individual run con-
tains very small variations. Thus, we average the expected
fMRI responses and their derivatives across all subjects to ob-
tain a mean ideal signal and its derivative, which we refer to
in the following as the task design signals.

The activity of the functional networks is represented by
the output of the LSTM layer, ht, i.e., ht (k) represents the
activity of functional network k at time t. For each subject,
we extract the output of the LSTM for every time point t ≥ T
(since the first T time points are required for fMRI signal pre-
diction). We then average the LSTM outputs across all sub-
jects to obtain the mean activity of each functional network.

Finally, we compute the correlation between the mean ex-
pected fMRI signal (from time T to the end of the scan) and
the mean activity of each functional network, and the correla-
tion between the mean temporal derivative of the expected
fMRI signal and the mean activity of each functional net-
work. A functional network with high correlation with the
mean expected fMRI signal is associated with the task activ-
ity itself. A functional network with high correlation with
the mean derivative of the expected fMRI signal is associated
with dynamic changes in the task. For example, in a task
paradigm with block design, the functional network would be
associated with the switching between 2 conditions.

3. EXPERIMENTS

3.1. Data and Preprocessing

Data were acquired for 2 separate datasets (originally for dif-
ferent studies) using the same biological motion perception
paradigm [6], protocol, and scanner. Each subject viewed a
series of alternating blocks of point-light displays of biologi-
cal motion and scrambled biological motion (~24 s/block, 6 of
each condition). Dataset 1 included 82 children with autism
(age = 10.79±3.23 years, IQ = 83.88±43.92) and 48 typical
controls (age = 9.31±3.90 years, IQ = 86.38±34.20) matched
for age and IQ. Dataset 2 included 21 children with autism
(age = 6.05±1.24 years, IQ = 102.00±17.87) and 19 typical
controls (age = 6.42±1.29 years, IQ = 111.47±14.45), again
matched for age and IQ. Each subject underwent a BOLD
fMRI scan (TR = 2000 ms, TE = 25 ms, flip angle = 60◦,
voxel size = 3.44×3.44×4mm3) acquired on a Siemens MAG-
NETOM Trio TIM 3T scanner.

Images were preprocessed in FSL [7], including motion
correction, interleaved slice timing correction, brain extrac-
tion, 4D mean intensity normalization, spatial smoothing (5
mm FWHM), data denoising via ICA-AROMA [8], nuisance
regression using white matter and cerebrospinal fluid, and
high-pass temporal filtering (100 s). Functional MRI were
registered to the standard MNI brain and parcellated into 90
cerebral brain regions using the AAL atlas [9]. The mean
time-series (146 and 156 time points for Dataset 1 and 2,
respectively) was extracted from each ROI and standardized
(subtracted the mean and divided by the standard deviation).

To effectively train the LSTM models, we augmented the
data for each subject by extracting all possible windows of
data with length T = 30 (60 s of scan time). Thus, the LSTM
network receives inputs of size 30 × 90. Dataset 1 was aug-
mented from 130 to a total of 15080 samples, while Dataset 2
was augmented from 40 to a total of 5040 samples.

3.2. Experimental Methods

The proposed LSTM models for generating fMRI time-series
data were trained separately for each dataset. We imple-
mented the models in Keras using the mean squared error
loss function, l = 0.0001 for the L1 weight regularization of
Wf for the fully connected layer, the AMSGrad variant [10]
of the Adam optimizer (learning rate = 0.001), a batch size
of 32, and 20 epochs of training. The best epoch was chosen
based on the minimum loss of a monitored validation set.

We compared the proposed LSTM method to 3 other ap-
proaches: 1) Using the original ROIs. We considered each
“network” to contain only 1 ROI, to investigate the poten-
tial advantages of truly functional network approaches. 2)
Using principal component analysis (PCA). The ROI time-
series data for all subjects was concatenated across time and
PCA was performed. The functional networks were then de-
fined by the principal components, and the activity of each



network was given by the score from projecting the data onto
the principal components. 3) Using independent component
analysis (ICA). Again, the data for all subjects was concate-
nated across time. Group ICA [11] using the fastICA package
for MATLAB [12] with default parameters was performed.
The functional networks were then defined by the indepen-
dent components, and the activity of each network was given
by the mixing matrix. For each of the network analysis ap-
proaches, we tried 2 values for the number of functional net-
works K (i.e., number of LSTM units or number of princi-
pal/independent components): 25 or 50.

For model evaluation, we used 10-fold cross-validation of
each dataset, with 10% for testing and 90% for training. For
the LSTM models, 10% of the training data was withheld as
validation data. Partitions of the dataset were performed in a
subjectwise manner, such that all samples from the same sub-
ject are kept in the same partition. We computed the corre-
lations between estimated functional networks and the design
signals (task activity and task dynamics for the 2 task stim-
uli), resulting in 4 correlation vectors with length K: cBA

(biological motion activity), cBD (biological motion dynam-
ics), cSA (scrambled motion activity), and cSD (scrambled
motion dynamics). The correlations were computed for data
in the training set, as well as separately the test set.

We assessed the overall ability of the estimated functional
networks to capture task-relevant activity by the maximum
and minimum correlations for each design signal. Further-
more, we assessed the reliability and reproducibility of the es-
timated functional networks in 2 ways. First, to assess within
dataset robustness, for each design signal we measured the
correlation of the corresponding computed measures between
the training and test sets (e.g., correlation between cBA com-
puted from training and test data). We expect that for a re-
producible functional network, the same correlation between
that network’s activity and the task design signals should be
observed in the training and test sets. Second, to assess ro-
bustness across datasets, we took the functional networks lo-
calized in Dataset 1 (2), extracted the corresponding activity
for these networks in Dataset 2 (1), and measured the max-
imum/minimum correlations in the test sets. Reliable func-
tional networks that capture task-relevant activity should pro-
duce large correlations with the task design signal in the inde-
pendent dataset. Paired two-tailed t-tests were used to com-
pare the corresponding results from different methods across
cross-validation folds, with significance level α = 0.05.

3.3. Results and Discussion

Results for Dataset 1 are shown in Figs. 1 and 2, and results
for Dataset 2 are shown in Figs. 3 and 4. Cyan markers de-
note statistically significantly different results compared to
our LSTM method.

Similar trends can be observed across datasets and differ-
ent numbers of functional networks to be estimated K. Cor-

(a) (b) (c)
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Fig. 1: Results for Dataset 1, with K = 25 networks. (a) Maximum
and (b) minimum correlation between functional network activity
and task design signals. (c) Correlation between patterns of activity
associated with task design signals from the training and test set. (d)
Maximum and (e) minimum correlation between functional network
activity in Dataset 2 using networks estimated by Dataset 1 and task
design signals. BA = biological motion task activity, BD = biological
motion task dynamics, SA = scrambled motion task activity, SD =
scrambled motion task dynamics, LSTM = our method (blue), ROI =
individual ROI analysis (red), PCA = principal component analysis
(yellow), ICA = independent component analysis (purple). Cyan
markers denote statistically significantly different results compared
to our LSTM method (paired two-tailed t-test, p < 0.05).

relation of functional network activity for subjects in the test
set with the design signals are generally stronger or similar
using our LSTM method compared to other approaches (sub-
figures (a) and (b)). The correlation between the values com-
puted from the training set and the test set are clearly stronger
using our LSTM method, particularly for design signals for
dynamic changes in biological and scrambled motion tasks
(subfigures (c)). Together this suggests that our approach esti-
mates functional networks whose activity patterns (defined by
the correlation vectors cBA, cBD, cSA, cSD) are more closely
replicated across subjects within the same dataset compared
to the other methods. Finally, when using functional networks
defined by one dataset to estimate functional network activity
in the other dataset, we again saw that our approach overall
resulted in the larger correlations with the task design signals
(subfigures (d) and (e)). This demonstrates that our LSTM ap-
proach is able to find more reliable networks that are highly
associated with task dynamics across different datasets.

4. CONCLUSIONS

We have presented a method for determining more repro-
ducible functional networks whose activity is more strongly
associated with a given task paradigm. Our approach uses un-
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Fig. 2: Results for Dataset 1, with K = 50 networks. See Fig. 1
caption for legend.
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Fig. 3: Results for Dataset 2, with K = 25 networks. See Fig. 1
caption for legend.

supervised training of LSTMs to learn to generate the fMRI
ROI time-series. We demonstrated stronger correlations be-
tween the activity of the LSTM-derived functional networks
with the design signals for a biological motion perception
task. These results translated better across subjects within the
same dataset and across datasets. This suggests the networks
found are more reproducible and more reliably characterize
the network activity in the brain, which is essential for better
characterizing the neural correlates of a target task.
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