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Abstract. Deep learning has become the new state-of-the-art for many
problems in image analysis. However, large datasets are often required
for such deep networks to learn effectively. This poses a difficult challenge
for many medical image analysis problems in which only a small number
of subjects are available, e.g., patients undergoing a new treatment. In
this work, we propose a number of approaches for learning generalizable
recurrent neural networks from smaller task-fMRI datasets: 1) a resam-
pling method for ROI-based fMRI analysis to create augmented data; 2)
inclusion of a small number of non-imaging variables to provide subject-
specific initialization of the recurrent neural network; and 3) selection
of the most generalizable model from multiple reinitialized training runs
using criteria based on only training loss. Using cross-validation to as-
sess model performance, we demonstrate the effectiveness of the pro-
posed methods to train recurrent neural networks from small datasets to
predict treatment outcome for children with autism spectrum disorder
(N = 21) and classify autistic vs. typical control subjects (N = 40) from
task-fMRI scans.

1 Introduction

Deep learning approaches are quickly becoming the machine learning technique
of choice for many medical image analysis problems, e.g., image classification,
segmentation, and registration [12]. The deep neural networks have a large ca-
pacity to learn directly from raw images. However, it is well known that these
popular methods can quickly overfit the data, resulting in poor generalization.
Thus, learning useful models generally requires training on very large datasets
and using proper model validation techniques.

The large data requirement poses a challenge in analyzing many medical
imaging datasets, in which only a small number of subjects may be available.
For example, it may not be feasible to gather large amounts of data when study-
ing a specific disease population or a new experimental treatment, or it may
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be difficult to obtain expert manual annotations of large datasets for training.
Recent trends toward open science and data sharing have made larger medical
imaging datasets more widely available, e.g., the ABIDE dataset for autism [2];
however, creating large datasets for every disease and medical imaging problem
is clearly not possible. While some medical image analysis problems can handle
smaller datasets by using patch-based approaches (e.g., in image segmentation
[12]) to augment the amount of data, such methods are not as suitable for ana-
lyzing neurological data from functional magnetic resonance imaging (fMRI).
In this paper, we propose new strategies that facilitate learning more gen-
eralizable neural network models from small fMRI datasets. We first adopt a
recurrent neural network with long short-term memory (LSTM) to generate
predictions from a whole-brain parcellation of fMRI data. We then use resam-
pling approaches to generate multiple summary time-series for each region in
the parcellation, augmenting the original dataset. Next, we utilize available non-
imaging variables to provide subject-specific initialization of the LSTM network.
Finally, we describe a criteria for selecting the most generalizable model from
many training instances on the same data using only training loss, allowing all
available data to be used for model training. We apply the proposed strategies
and compare them to other approaches to learn from task-fMRI for two small
data examples: 1) a regression problem of predicting treatment outcome from 21
children with autism spectrum disorder (ASD), and 2) a classification problem
of identifying autistic children vs. typical controls from a dataset of 40 subjects.

2 Methods

2.1 Base LSTM Architecture for fMRI

LSTMs and related architectures are designed to learn long-term dependencies in
time-series data [7]. They have recently been applied to fMRI for modeling brain
dynamics [6] and for classification [3]. In addition to the time dependent nature
of the model, LSTMs are a nice neural network model specifically for small fMRI
datasets, since an “unrolled” LSTM with T timesteps can be thought of as a deep
network with 7" layers that share the same parameters across all the layers. This
likely considerably reduces the number of model parameters that need to be
learned compared to other standard deep neural network architectures.
Standard fMRI whole-brain analysis involves first summarizing the data in
a number of regions of interest (ROIs) according to some brain parcellation.
While deep networks are able to learn from raw image inputs, the ROI approach
is beneficial in our case of dealing with smaller fMRI datasets, as fMRI data is
very noisy and the ROI representation greatly reduces the input data dimension.
Our base LSTM architecture is based on the model in [3], with added regular-
ization and slight changes for regression vs. binary classification. The summary
time-series from the ROIs are used as input to an LSTM. For regression, we
pass the output from the LSTM at the last timestep to a dense layer to produce
the predicted value (Fig. 1(a), blue path); thus, the entire task-fMRI sequence is



analyzed before providing a final prediction. For classification, we more closely
follow the network in [3]; the LSTM output from every timestep is passed to a
shared dense layer with a single node, followed by mean pooling across time and
a sigmoid activation function to produce the classification probability (Fig. 1(b),
blue path). During training, we include dropout of the LSTM weights [5] and
add dropout (with probability 0.5) between the LSTM output and dense layer.

2.2 Data Augmentation by Resampling

Standard data augmentation techniques for neural networks to learn from image
data include using random croppings and random rotations of the images. How-
ever, our LSTM network is designed to use the time-series from the brain ROIs
as inputs, and such augmentation techniques are not appropriate for {MRI. We
could perform random cropping along the time dimension, but LSTMs learn best
from long sequences. Another generic approach is to inject random noise into
the inputs [16]; however, it is unclear how to choose the best noise model and
associated parameters, and while such approaches may slow down overfitting, it
may not be representative of the variation in the fMRI data.

We instead propose a resampling approach to augment the data. Traditional
ROI analysis extracts the mean time-series calculated from all voxels in the ROI.
To inject variation to the ROI time-series, we propose sampling only a subset
of the ROI voxels or sampling all voxels with replacement (bootstrapping) and
using the average of the sampled data to summarize the time-series for the ROL.

2.3 LSTM Initialization with Non-imaging Variables

An LSTM cell contains two state vectors, the hidden state (i.e., output) h; and
the cell state ¢;. The state of an LSTM at time ¢ depends on the current input
x; and the cell state from the previous timestep h;_1 and ¢;_1:

gt =0 (Wyzy + Ughy—1 + by) , with g € {4, f, 0} (1)
¢ = tanh (Wexy + Uchi—1 + be) (2)
ct =g % G+ frxciq (3)
hy = o, * tanh (¢;) (4)

where i, f, and o represent input, forget, and output gates, ¢ is the current
estimated cell state, and W, U, and b are the LSTM model parameters.

Unless otherwise specified, the initial state of the LSTM is set to zeros, hy =
¢o = 0. Simple non-imaging subject information (e.g., age) is often available. We
propose initializing the LSTM by feeding such non-imaging information into 2
dense layers, whose outputs are the initial hidden and cell states (Fig. 1, green
path). Such initialization approaches have been proposed in other domains, e.g.,
an LSTM model to generate an image caption was initialized on image features
extracted via a convolutional neural network [10]. In our small data setting,
conditioning the LSTM on subject-specific parameters helps to incorporate non-
imaging variation across subjects with just a small increase in model parameters,
unlike other multi-modal fusion techniques for neural networks [13,4].
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Fig. 1: LSTM networks with initialization using non-imaging variables.

2.4 Model Selection from Training Loss

Neural network training (in the non transfer-learning case) is generally performed
using random initialization of model weights. With large amounts of data, sev-
eral training runs can be performed with different initializations, and a validation
dataset can be set aside to assist with choosing the best trained model. How-
ever, with small datasets, we would prefer to use all available data for training.
Furthermore, splitting off a small validation set is likely not representative of
the test data and thus is not appropriate for model selection.

We propose choosing the best model from several initializations based on the
recorded training loss curve. Rather than choosing the model with the lowest
loss, which is likely to be the most overfit to the small dataset, we choose the
model that fits slowest to the data. We quantify this criteria with the following:

N 1

M= arg]‘rlnax median (AL s) ROETIE
where Ly is the training loss curve for model M, Ly, (0) is the loss after epoch 0,
ALy s are the first differences of the loss curve from epoch 0 to stopping epoch s,
and s is the first epoch such that Ly (s) < Lm(0)/e. Thus, the criteria is looking
for the model that learns slowest, measured by the median of the first differences
over the epochs up to epoch s, weighted by the initial loss and the number of
epochs to reduce the loss to /e of the initial loss (borrowing the idea of relaxation
time). We only look at the first differences up to /e since we are more interested
in how fast the model fits the data in earlier epochs. Furthermore, the training
curve will likely have a very long flat tail due to overfitting to the training set,
making it difficult to measure differences in convergence. We scale our criteria
by the initial loss, since given two curves with the same rate of convergence but
with different initial losses, we would rather choose the model with the higher
initial loss, signifying a worse initial fit and overall slower learning of the model.
Finally, we scale by the number of epochs for the signal to decay (“relaxation
time”), since given two curves with similar convergence measured by the other
two metrics, we want the model that takes longer to minimize the loss.
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3 Experiments

3.1 Data and Preprocessing

Data was acquired from 21 children with ASD (ages 6.05 + 1.24 years) and
19 typically-developing controls (TC) (ages 6.42 £ 1.29 years). Each subject
underwent a T1-weighted MP-RAGE structural MRI (1 x 1 x 1 mm? voxel size)
and BOLD T2*-weighted fMRI sequence (3.44 x 3.44 x 4.00 mm?® voxel size)
acquired during a biological motion perception task [9]. The fMRI paradigm
involved viewing point light animations of coherent and scrambled biological
motion in a block design (~24 s per block, ~5 min scan). Non-imaging information
collected included age, sex, 1Q, and score on the Social Responsiveness Scale
(SRS), 2nd edition [1]. SRS measures severity of social impairment in autism;
lower scores signify better social ability. ASD subjects then underwent 16 weeks
of Pivotal Response Treatment [11], a behavioral therapy for ASD. SRS score
was measured again at the end of treatment.

Images were preprocessed in FSL [8] using the pipeline by Pruim et al. [14],
which included motion correction, interleaved slice timing correction, brain ex-
traction, 4D mean intensity normalization, spatial smoothing (5 mm FWHM),
data denoising via ICA-AROMA [14], nuisance regression using white matter
and cerebrospinal fluid, and high-pass temporal filtering (100 s). Functional MRI
were aligned to the standard MNI brain with the aide of the structural MRI. The
AAL atlas [15] was applied, resulting in 90 cerebral ROIs from which summary
time-series (156 timepoints) were extracted and used as input to the LSTM.
Since fMRI absolute signal varies greatly across the brain, each summary time-
series was standardized (subtracted mean, divided by standard deviation). The
data for each non-imaging variable were normalized to range [-1,1].

3.2 Regression Example: Prediction of Treatment Outcome

We investigated the effectiveness of the proposed learning strategies on the fol-
lowing regression problem: to predict the treatment outcome (i.e., percent change
in SRS) for the 21 children with ASD from baseline information. Leave-one-out
cross-validation (train on 20, test 1) was used to assess model performance. Mean
squared error (MSE), standard deviation (SD) of the squared error, and Pear-
son’s correlation coefficient (r) between predicted and true treatment outcome
were computed from cross-validation folds. Paired one-tailed t-tests were used
to compare the squared errors, and p-values for r provided evidence for non-zero
correlation, with a significance level of 0.05. Neural networks were implemented
and trained in Keras using the MSE loss function, adadelta optimizer, 8 hidden
LSTM units, a maximum of 100 epochs with early stopping (patience of 5 epochs
monitoring training loss), and a batch size of 32 unless otherwise specified.

We first directly trained the LSTM network on the 21 fMRI datasets. We
varied the batch size (2, 5, 10, 20) to try to improve learning. The best result is
shown in Table 1a (“Original”); however, errors between the best result and other
batch sizes were not significantly different, and correlations were insignificant.



Table 1: Results for predicting treatment outcome.

(a) Data augmentation approaches. (b) Non-imaging data and model selection.

[ Dataset [ MSE (SD) [ r [ » ] Dataset [ MSESD) [ r [ pr ]
Original 0.097 (0.160) 0.35 | 0.1204 Bootstrap (BS) 0.031 (0.041) 0.53 0.0129
Repeat 0.035 (0.049 0.45 | 0.0415 BS + Non-Tmaging | 0.020 (0.025) 0.73 0.0002

Low Noise 0.034 (0.037)* 0.47 | 0.0324 BS + Top Fusion 0.035 (0.037) 0.46 0.0339
High Noise | 0.029 (0.029)* 0.59 | 0.0050 BS + Model Bag 0.032 (0.037) 0.51 0.0175

)
)
)
Sample 10 0.029 (0.034)* 0.58 | 0.0058 BS + Model Select 0.028 (0.032) i 0.60 0.0044
Sample 50 0.034 (0.036; 0.47 | 0.0313 BS + Non-Imaging 0.024 (0.029) T 0.66 | 0.0011

Sample 250 | 0.030 (0.026)* 0.55 | 0.0101 + Model Bag
Bootstrap 0.031 (0.041)* 0.53 | 0.0129 BS + Non-Imaging At
.018 (0.02 0.77 |<0.0001
*Significantly better than original dataset. + Model Select 0.018 (0.025) <

~Significantly better than bootstrap dataset.
fSignificantly better than one individual model.

We then compared the following data augmentation techniques: 1) repeating
the data (“Repeat”), 2) standard noise injection by adding zero-mean Gaussian
noise with SD equal to SD of the time-series divided by 10 (“Low Noise”) or 2
(“High Noise”), and 3) the proposed resampling approach of randomly sampling
10, 50, or 250 voxels without replacement or bootstrap sampling all voxels from
each ROI to compute the summary time-series. We repeated the augmentation
approaches 50 times per subject, resulting in 1050 samples. Results are shown in
Table 1a. Simply repeating the data resulted in significant correlation, although
MSE did not significantly improve. All other augmentation approaches produced
significant correlation as well as significantly reduced the MSE. While the high
noise augmentation nominally resulted in the highest correlation, there were no
significant differences between any noise and sampling methods.

Since errors were not significantly different and the bootstrap sampling does
not require any parameter selection, we tested the remaining learning strategies
on only the bootstrap-augmented dataset (Table 1b). Initializing the LSTM
with non-imaging data dramatically improved the correlation and reduced the
MSE by 35% (just missing significance with p = 0.0572), at the cost of only a
1% increase in number of parameters. Applying a standard multimodal fusion
approach to combine the final fMRI score and non-imaging data in a dense layer,
also increasing the number of parameters by 1%, results in worse performance
(“Top Fusion”), demonstrating the benefit of our LSTM initialization method.

We tested our model selection approach by assessing the training curves from
2 separate runs, and compared this to averaging the predictions from the 2 runs
(bagging). We applied these approaches to the bootstrap dataset and the boot-
strap with non-imaging model. Model bagging did not produce significantly lower
errors compared to the individual models for the bootstrap dataset. Our model
selection approach resulted in significantly lower MSE compared to at least one
of the individual models. Furthermore, applying all three of our proposed learn-
ing strategies resulted in significantly more accurate predictions compared to
data augmentation alone, with the highest correlation with the true outcomes.
The effect of adding each proposed learning strategy is illustrated in Fig 2.
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Fig.2: Plots of true vs. predicted treatment outcome after applying each proposed
learning strategy. Perfect predictions would fall on red reference line. (a) Original
data. (b) Data augmentation with bootstrap resampling. (c) Bootstrap resampling
and LSTM initialization with non-imaging data. (d) Bootstrap resampling, inclusion
of non-imaging data, and model selection based on training loss criteria in (5).

Table 2: Results for classifying ASD vs. TC subjects.

Dataset [Mean (SD) Accuracy (%)[Mean (SD) TPR (%)[Mean (SD) TNR (%)|
Original 51.8 (3.3) 56.1 (13.3) 55.1 (12.4)
Bootstrap 645 (5.1) 707 (7.3)" 60.9 (11.1)
Bootstrap + Non-Imaging 67.5 (6.7)" 72.2 (9.2)" 64.6 (6.3)*
Bootstrap + Non-Imaging + Model Select 69.8 (5.5) 7 75.1 (8.4)" 65.5 (6.8)"

*Significantly better than original dataset. " Significantly better than bootstrap dataset.
Significantly better than at least one individual model.

3.3 Classification Example: Autism vs. Typical Control

We tested the proposed learning strategies on training the LSTM network to
classify the 21 ASD and 19 TC subjects (52.5% ASD subjects). Ten-fold cross-
validation (train on 36, test 4) was repeated 10 times, and performance of dif-
ferent methods were measured using mean and standard deviation of the cross-
validation accuracy, true positive rate (TPR), and true negative rate (TNR).
Paired one-tailed t-tests were used to compare cross-validation performance be-
tween different methods, with a significance level of 0.05. Training was run with
similar Keras setup as above, with maximum number of epochs reduced to 20.
Results quantifying the effects of the proposed learning strategies are shown
in Table 2. Learning from the original, non-augmented sample results in chance
accuracy. Applying bootstrap resampling (50 resamples, resulting in 2000 to-
tal samples) significantly improves the accuracy and TPR. Using non-imaging
variables to set the initial LSTM state further improved all performance mea-
sures, with significant differences compared to using the original dataset. Finally,
additionally including model selection produced the best performing model.

4 Conclusions

In this work, we presented strategies for training LSTMs on small datasets
and demonstrated their effectiveness in learning better generalized models. Our
methods for facilitating learning included a data augmentation approach specific



to ROI-based analysis, incorporation of subject-specific variations by initializing
the LSTM based on each subject’s non-imaging parameters, and model selection
based on training loss criteria alone to maximize the amount of data available for
training. Regression and classification learning from 2 small task-fMRI datasets
showed that while naijceve training of the LSTM was unable to learn useful
models, combining the proposed learning strategies resulted in the successful
training of more generalizable LSTMs.
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