
Conclusions 

•  Our learning strategies for small datasets produced more generalizable models 
•  Data augmentation via bootstrap sampling requires no parameter selection 
•  LSTM initialization with non-imaging information incorporates more subject- 
  specific variation at small cost  
•  Model selection from training loss alone maximizes amount of data for learning 

References 
 

1. Craddock et al., Hum. Brain Mapp. 2012. 2. Dvornek et al., MLMI 2017. 3. Kaiser et al., PNAS 2010. 
4. Pruim et al., NeuroImage 2015. 5. Tzourio-Mazoyer et al., NeuroImage 2002. 6. Dvornek et al., ISBI 2018. 

This work was supported by NIH grants 
R01NS035193 and R01MH100028. 

Background 

• Deep learning has become state-of-the-art for many image analysis problems 
• However, deep networks often require large datasets to learn effectively 
• Challenge: Many medical image analysis problems have only small number of 

subjects available, e.g.: 
• Population constraints, e.g., disease, treatment conditions 
• Time-intensive data collection, e.g., fMRI 

• Contributions: Develop approaches for deep learning from smaller fMRI datasets 
1. Data augmentation via resampling for ROI-based fMRI analysis 
2. Subject-specific initialization of LSTM using non-imaging information 

3. Model selection using criteria based on training loss 
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Experimental Setup 
• Goal: Classify ASD vs. typically-developing subjects (N = 40) 
• Evaluation: 10-fold CV repeated 10x, one-tailed paired t-tests (p < 0.05) 
 

Results 
 
 

 
* Significantly better than original dataset.   ∧	
 Significantly better than bootstrap dataset. 
† Significantly better than at least one individual model. 

Experiments: Classification Task 

Experiments: Data and Preprocessing 

Data Collection 
• 21 children with autism spectrum disorder (ASD) + 19 typically-developing controls 
• ASD subjects given 16 weeks Pivotal Response Therapy 
• Baseline imaging: 

•  MP-RAGE structural MRI  
•  BOLD fMRI with biological motion perception task3 

• Non-imaging information: 
•  Baseline for all: age, sex, IQ, Social Responsiveness Scale (SRS) score 
•  Post-treatment for ASD subjects: SRS score 

 

Input Preprocessing 
•  fMRI images preprocessed using standardized pipeline4 
•  Standardized time-series extracted from each cerebral ROI of AAL atlas5 
•  Normalized each non-imaging variable to [-1,1] 

Biological Motion Scrambled Motion 

Method Mean (SD) 
Accuracy (%)  

Mean (SD) 
TPR (%) 

Mean (SD) 
TNR (%) 

Original 51.8 (3.3)	
 *∧† 56.1 (13.3) 55.1 (12.4) 
Bootstrap 64.5 (5.1) *∧† 70.7 (7.3) * 60.9 (11.1) 
Bootstrap + Non-Imaging 67.5 (6.7) *∧† 72.2 (9.2)	
 * 64.6 (6.3) * 
Bootstrap + Non-Imaging + Model Select 69.8 (5.5) *∧† 75.1 (8.4) * 65.5 (6.8) * 

• Large datasets - choose best model from multiple training runs using validation set 
• Small datasets - not enough for validation, want to use all data possible for training 
à Choose model      that learns slowest based on training loss criteria: 
 

                  LM(x) = training loss after epoch x for 
                        model M
                  s = first epoch s.t. LM(s) < LM(s)/e
                  ΔLM,s = first differences of loss curve
                       from epoch 0 to epoch s

Methods: Model Selection from Training Loss 

M̂ = argmax
M
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Methods: Data Augmentation by Resampling 

• Standard data augmentation methods (random image croppings/rotations) not 
  appropriate for fMRI time-series analysis 
• Traditional fMRI ROI analysis extracts mean time-series from all voxels in ROI 
à Augment data by extracting mean time-series of randomly sampled voxels in ROI  
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Methods: LSTM-Based Network with Non-Imaging Information  
Base Network Architecture 
• LSTM-based network predicts from ROI-summarized fMRI time-series 
• Advantages of proposed LSTM-based model for smaller fMRI datasets: 

• Utilizes fMRI time-series data as inputs (recently proposed for classification2) 

• ROI representation greatly reduces input dimension compared to raw fMRI data 
• Deep network with shared parameters across time à lower model complexity 

 

LSTM Initialization 
• LSTM cell contains hidden state ht and cell state ct 
• Simple non-imaging information often available (e.g., age) 
à Initialize LSTM by inputting non-imaging information into 2 dense layers 

 representing h0 and c0 (green path) 
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Regression Network: Analyze entire signal 
before making prediction 

Classification Network: Output from each 
timestep used to make prediction    

Experimental Setup 
• Goal: Predict treatment outcome (percent change in SRS after treatment) (N = 21) 
• Evaluation: Leave-one-out cross-validation (CV), one-tailed paired t-tests (p < 0.05) 

Results 
•  Augmented dataset 50x using: 1) Data repetition, 2) Standard Gaussian noise 
  addition, 3) Proposed resampling 

•  Data repetition did not 
  significantly reduce MSE  
•  Noise addition and 
  resampling significantly 
  reduced MSE compared 
  to original dataset 
•  No significant differences 
  between any noise and 
  sampling methods 

• Non-imaging information in 
LSTM initialization performed 
better than in standard top- 
level multi-modal fusion6  

• Model selection from 2 
separate runs performed 
better than model bagging 

Experiments: Regression Task 

Original	
  

MSE = 0.097±0.160 
r = 0.35 (p = 0.1204) 

Bootstrap + 
Non-Imaging 

MSE = 0.020±0.025 
r = 0.73 (p = 0.0002) 

Bootstrap + Non-Imaging 
+ Model Selection 

MSE = 0.018±0.025 
r = 0.77 (p < 0.0001) 

Bootstrap	
  

MSE = 0.031±0.041 
r = 0.53 (p = 0.0129) y = x
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