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The Challenge of Learning from fMRI of 
Heterogeneous Psychiatric Disorders 

•  fMRI used to characterize pathophysiology 
of psychiatric disorders, e.g. autism 
spectrum disorder (ASD) 

•  ASD is extremely heterogeneous 
•  Early studies impose homogeneity 

–  Restrict gender, age, etc. 
à Smaller datasets 
à Poor generalization of results 

•  Recent large open datasets (ABIDE) 
–  Highly heterogeneous  
à Poor classification accuracy of ASD/Control 
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1www.autismspeaks.org 
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Include Demographic Information to Mitigate 
Heterogeneity Problem 

•  Non-imaging, scalar variables easy to obtain: Age, sex, IQ, ... 
•  Many ways to incorporate demographic variables 

•  No approach aims to modulate differences in neurological mechanisms 
•  We model heterogeneous functional network patterns using a 

demographic guided attention + RNN model for fMRI 
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1Parisot et al., MedIA 2018;  2Dvornek et al., MICCAI 2018 
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Baseline LSTM Network for fMRI Time-series Data 
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1Dvornek et al., MLMI 2017;  2Craddock et al., Nature Methods 2013 
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Proposed Demographic-Guided Attention Network 
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Generalized Attention Mechanism Based on 
Demographic and fMRI Information 

•  Query: Demographic information d 
•  Key and value: LSTM output ht 
•  Scaled dot product attention computes context c: 

Query Key Value 
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Model Neurological Heterogeneity with Residual 
Connection between LSTM and Attention Outputs 

•  Use context to bias LSTM output 
à  Change focus on LSTM nodes based on demographic information 

 
 

•  For multiple attention heads: 
–  Process each head k output ck + ht with separate FC layer 
–  Take maximum score 
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Model Greater Neurological Heterogeneity with 
Multiple Attention Heads and Query Diversity Loss 

•  Single head: same demographics à same neuropathophysiology 
•  Multiple heads to model greater heterogeneity 
•  Query Diversity Loss: encourage K different attention heads to 

capture different underlying neuropathological modes: 

•  Total loss:  

= Query vector for subject i, 
    attention mode j Cosine proximity 

Binary cross-entropy 0.5 in experiments 
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Interpretation of Demographic-Guided Attention as 
Neuropathological Heterogeneity 

•  LSTM node f : represents functional network 
–  Assign membership by large LSTM weights of ROI inputs1 

–  LSTM output h(f): signal for functional network f 
•  Demographic information provides context for deciding which 

functional networks are important for ASD classification 
–  c (f): demographic-guided attention to functional network f 
–  Observe correlation between d(i) and c(f) across subjects 

1Dvornek et al., MLMI 2017; 
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Datasets and Preprocessing 

•  Resting-state fMRI from multisite ABIDE I Dataset 
•  3 Datasets from 3 prior publications 

–  DS11: N = 1100, CCS Pipeline, CC200 atlas 
–  DS22: N = 1035, CPAC Pipeline, CC200 atlas 
–  DS33: N = 860, CPAC Pipeline, HO atlas 

•  Standardize ROI mean time-series, resample at 2s interval 
•  Training: augment x10 by randomly cropping 3 min windows 
•  Inference: predict using all 3 min windows 
•  Demographic data: gender, age, handedness, full IQ, verbal IQ, 

performance IQ, eye status 
–  Standardized to [-1,1] 

1Dvornek et al., MLMI 2017;  2Heinsfeld et al., Neuroimage clin., 2018;  3Abraham et al., Neuroimage 2017  
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Classification of ASD vs. Healthy Control: 
Methods Compared 

Published results 

DS1 

DS2 DS3 
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Classification of ASD vs. Healthy Control: 
Methods Compared 

Baseline LSTM – no 
demographic 
information1 

ASD Probability 
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1Dvornek et al., MLMI 2017 
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Classification of ASD vs. Healthy Control: 
Methods Compared 

LSTM + late fusion 
of demographic 
information1 
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1Dvornek et al., ISBI 2018 
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Classification of ASD vs. Healthy Control: 
Methods Compared 

LSTM + state 
initialization via 
demographic 
information1 
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1Dvornek et al., MICCAI 2018  
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Classification of ASD vs. Healthy Control: 
Methods Compared 

LSTM + DGA 
with 1 or 2 heads, 
context alone 
(no residual 
connection)  
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Classification of ASD vs. Healthy Control: 
Methods Compared 

LSTM + DGA with 
1 or 2 heads 
(with residual 
connection) 
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Classification of ASD vs. Healthy Control: 
Methods Compared 

Full model  
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Classification of ASD vs. Healthy Control: 
Methods Compared 

Evaluation of implemented models 
•  Leave-one-site-out (LOSO) cross-validation (CV), 

repeated 5 times 
•  Averaged performance measures for each site 

across CV runs 
•  Paired two-tailed t-tests to compare models 
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DS2 Classification Results 

* Higher compared to LSTM with no demographics (p < 0.05) 
   Taken from literature, reflects 1 round of LOSO CV 
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Networks with Demographic-guided Heterogeneity of 
Functional Processing  

Different modes of response for functional network modulated by 
demographics may point to different mechanisms of ASD pathophysiology 
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Conclusions 

•  What we did: 
–  Novel demographic-guided attention mechanism for modeling 

heterogeneity in neuropathophysiology  
–  Achieved higher ASD classification performance on several ABIDE 

datasets under different preprocessing pipelines using LOSO CV 
•  What this means: 

–  Improved generalization to data from new imaging sites 
–  Different neural mechanisms may explain in part difficulty in 

classification and conflicting ASD literature 
•  What’s next: 

–  Include other phenotypic information (e.g., genetic, behavior scores)  
–  Deeper analysis of changes in functional network patterns 
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Thank you! 

•  NIH Grants R01 MH100028 and R01 NS035193 
•  Contact: nicha.dvornek@yale.edu 
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