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The Challenge of Learning from fMRI of

Heterogeneous Psychiatric Disorders

« fMRI used to characterize pathophysiology
of psychiatric disorders, e.g. autism
spectrum disorder (ASD)

« ASD is extremely heterogeneous

« Early studies impose homogeneity
— Restrict gender, age, etc.
—> Smaller datasets
- Poor generalization of results

« Recent large open datasets (ABIDE)

. Core autism symptoms
Associated neuro! logical issues
Associated systemic issues

O Related disorders

Sleep
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— Highly heterogeneous
- Poor classification accuracy of ASD/Control
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Include Demographic Information to Mitigate

Heterogeneity Problem

« Non-imaging, scalar variables easy to obtain: Age, sex, IQ, ...
« Many ways to incorporate demographic variables
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« No approach aims to modulate differences in neurological mechanisms

« We model heterogeneous functional network patterns using a
demographic guided attention + RNN model for fMRI
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Baseline LSTM Network for fMRI Time-series Data
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Proposed Demographic-Guided Attention Network
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Generalized Attention Mechanism Based on

Demographic and fMRI Information

e Query: Demographic information d
« Key and value: LSTM output h,

« Scaled dot product attention computes context c:
T
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Model Neurological Heterogeneity with Residual

Connection between LSTM and Attention Outputs

« Use context to bias LSTM output

- Change focus on LSTM nodes based on demographic information
F o

Demographic-Guided Attention (DGA)

h h h

LSTM LSTM o LSTM
Cell Cell Cell

« For multiple attention heads:

— Process each head k output ¢, + h, with separate FC layer
— Take maximum score
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Model Greater Neurological Heterogeneity with

Multiple Attention Heads and Query Diversity Loss

« Single head: same demographics = same neuropathophysiology
« Multiple heads to model greater heterogeneity

« Query Diversity Loss: encourage K different attention heads to
capture different underlying neuropathological modes:

N qz;%'k B
Lop S‘S‘ S‘ qdi; — ijdi
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= Query vector for subject 1,

Cosine proximity attention mode j

Totalloss: [, = L~ + )\LQD
. / \ . .
Binary cross-entropy 0.5 1In experiments
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Interpretation of Demographic-Guided Attention as

Neuropathological Heterogeneity

« LSTM node f: represents functional network
— Assign membership by large LSTM weights of ROI inputs?

|LSTM Weights W(f,r)|

LSTM node f

ROIr
— LSTM output h(f): signal for functional network f
« Demographic information provides context for deciding which
functional networks are important for ASD classification

— ¢ (f): demographic-guided attention to functional network f
— Observe correlation between d(i) and c(f) across subjects
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Datasets and Preprocessing

« Resting-state fMRI from multisite ABIDE I Dataset
« 3 Datasets from 3 prior publications
— DS1': N = 1100, CCS Pipeline, CC200 atlas
— DS22: N = 1035, CPAC Pipeline, CC200 atlas
— DS33: N = 860, CPAC Pipeline, HO atlas
« Standardize ROI mean time-series, resample at 2s interval
e Training: augment x10 by randomly cropping 3 min windows
« Inference: predict using all 3 min windows

« Demographic data: gender, age, handedness, full 1Q, verbal 1Q),
performance IQ, eye status

— Standardized to [-1,1]
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Classification of ASD vs. Healthy Control:

Methods Compared

DS1
Model
Identifying Autism from Resting-State fMRI
. . Using Long Short-Term Memory Networks
Published results
LSTM |5 Nicha C. Dvornek!®™), Pamela Ventola?, Kevin A. Pelphrey?,
DFuse [7] and James S. Duncan®*?
DInit [6]
Bgﬁ;g DS2 DS3
e A_l Identification of autism spectrum  Deriving reproducible biomarkers from
DGAS disorder using deep learning and  multi-site resting-state data: An Autism-
DGA2-QDL the ABIDE dataset based example
’ Anibal Sélon Heinsfeld 2, Alexandre Rosa Franco  © 9 R. Cameron Craddock Alexandre Abraham # & = Michael P. Milham © f, Adriana Di Martino 8, R. Cameron Craddock © ,
f & Augusto Buchweitz > 4 ¢, Felipe Meneguzzi & = Dimitris Samaras © ¢, Bertrand Thirion  ?, Gael Varoquaux  ®

Yale scHOOL OF MEDICINE SLIDE 10



Classification of ASD vs. Healthy Control:

Methods Compared
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Classification of ASD vs. Healthy Control:

Methods Compared
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Classification of ASD vs. Healthy Control:

Methods Compared

Model
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Classification of ASD vs. Healthy Control:

Methods Compared
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Classification of ASD vs. Healthy Control:

Methods Compared
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Classification of ASD vs. Healthy Control:

Methods Compared
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Classification of ASD vs. Healthy Control:

Methods Compared
Model
Orig’ [9) Evaluation of implemented models
LSTM [| « Leave-one-site-out (LOSO) cross-validation (CV),
DFuse [7] repeated 5 times
Dlnit [6]  Averaged performance measures for each site
ggg‘g across CV runs
SGAT » Paired two-tailed t-tests to compare models
DGA?2
DGA2-QDL
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DS2 Classification Results

Table 2: DS2 Classification Results (N = 1035, 48.8% ASD)

Leave-One-Site-Out

Weighted by # Subjects/Site

Model Mean (Std) | Mean (Std) | Mean (Std) | Mean (Std) || Mean (Std) | Mean (Std) | Mean (Std)
ACC (%) | TPR (%) | TNR (%) AUC ACC (%) | TPR (%) | TNR (%)
Orig' [9] || 65 (L.5) 69 (2.6) 62 (2.7) 65.4 (1.3) | 68.1(2.6) | 62.3 (2.6)
LSTM [5] || 63.6 (0.5) | 55.2 (1.6) | 71.9 (0.6) |0.709 (0 006) || 65.6 (0 6) | 582 (1.7) | 72.7 (0.9)
DFuse [7] || 65.5 (0.9) * | 57.1 (0.6) | 73.5 (1.6) |0.713 (0.006) 61.2 (1.2) 8 (1.0)
DInit [6] || 65.8 (0.8) * | 58.1 (0.4) | 72.9 (1.4) |0.720 (0.009) |[6 9 (3.2)
DGAI-C |[65.6 (1.7) * | 61.1 (1.6) 0.713 (0.011) .
DGA2-C | 65.8 (0.9) F 0.719 (0.009) || 67.2 ( ) 0.
DGA1 || 66.1 (1.5) * 4) 0719 (0.011) ]| 67.4 (1.7) * | 63.6 (2.3) *
DGA2 | 65.5 (1.0) * 76.5 (1.4) * [0.716 (0.015) | 671 (L4) | 57.6 (13) | 76.1 23) *
DGA2-QDL[66.4 (0.4) 58 0 (19) = | 742 (2.0) |0.722 (0.006) 67.4 (0.5) * | 61.3 (L.7) * | 73.1 (1.9)

* Higher compared to LSTM with no demographics (p < 0.05)

T Taken from literature, reflects 1 round of LOSO CV
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Networks with Demographic-guided Heterogeneity of
Functional Processing

US Site

Autobiographical Memory, Default Mode Face Recognition, Visual

Gender Handedness

Yale Site

Visual Perception, Face Fearful, Happy

Different modes of response for functional network modulated by
demographics may point to different mechanisms of ASD pathophysiology
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Conclusions

e What we did:

— Novel demographic-guided attention mechanism for modeling
heterogeneity in neuropathophysiology

— Achieved higher ASD classification performance on several ABIDE
datasets under different preprocessing pipelines using LOSO CV

« What this means:
— Improved generalization to data from new imaging sites

— Different neural mechanisms may explain in part difficulty in
classification and conflicting ASD literature

« What’s next:
— Include other phenotypic information (e.g., genetic, behavior scores)
— Deeper analysis of changes in functional network patterns
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Thank you!

e NIH Grants Ro1 MH100028 and Ro1 NS035193
« Contact: nicha.dvornek@yale.edu
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